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INFLUENCE OF GAS BUBBLES ON NONLINEAR
DYNAMIC CHARACTERISTICS OF THE OIL FILM OF
A TILTING PAD BEARING

N. Ya. Khlopenko UDC 621.822.5

The influence of a comparatively low volume concentration of gas microbubbles contained in oil on nonlinear
characteristics describing the behavior of an oil film in the guide gap of a hydrodynamic ulting pad bearing
under action of a low-frequency harmonic force is analyzed using a numerical dynamic model of a collar—oil
film—pad system. It is shown that bubbles in the il greatly affect the efficiency of the tilting pad bearing.
Results of oil-film-dynamics investigations reported previously (including those of the present author) are

generalized.

Introduction. Recently the problems concerned with the substantial growth of alternating axial loads onto
hydrodynamic tilting pad bearings in engineering units have become pressing. Under such conditions a
comparatively large amount of air bubbles often appears in the lubricant layer, which can cause failure of a tilting
pad bearing due to "turning-over” of the oil wedge (I, 2, etc. ). Therefore investigation of the effect of gas bubbles
on the behavior of a collar—oil film—pad system is of both practical and theoretical interest.

The subject matter of the present work includes investigation of the nonlincar dynamic characteristics of
an oil film with gas microbubbles in the quide gap of a tilting pas bearing and generalization and refinement of the
linear model of a similar process described in [3]. In an approximation of a thin lubricant laver calculations are
madc of the pressure components, deformations, displacements, and temperature field of a tilting pad that are in
response to an external alternating harmonic low-frequency force of a comparatively large amplitude. To describe
pressurc and temperature distributions, we use the unsteady Reynolds equation and the cnergy equation for an
adiabatic lubricant layer. The Rayleigh—Plesset equation is used to determine the radii of oscillating spherical
bubbles moving along the stream lines of the carrier medium (here the results reported previously in [3-6, ctc. |
arc slightly modified).

To analyze the influence of layer microbubbles, we calculated the nonlincar coefficients of effective
clasticity and damping of the support, which allow for the dynamic response of the bubbles to pressure variation
in the film. As might be expected, these characteristics arc practically independent of the size of the spherical
bubbles, since with small microbubble radii of the order 1078 m (as adopted in the calculations) the frequency of
their natural oscillations attains, according to {7 ], approximately I MHz, i.e., differs from the prescribed loading
frequency of 75 Hz by several orders. With such a frequency differcnce, the characteristic time of support loading
1s lower by approximately several orders as compared with the period of natural oscillations of a bubble. Owing to
this fact, the behavior of bubbles in an alternating pressurc field, as shown in (7], is quasistatic and described by
the degenerate steady-state Rayleigh ~—Plesset equation. Also, the influence of the volume concentration of bubbles
on support cfficicncy is analyzed.

Mathematical Formulation of the Problem and the Basic Design Formulas. The following system of
cquations for translational displacement of collar and rotational motion of a pad in tangential and radial directions
under the action of an external force, hydrodynamic forces and constraint reactions of rolling friction of a lock bolt

of the pad with a caulking ring was presented earlier [4, 6]

Ship Building S. O. Makarov Institute, Nikolacv, Ukraine. Translated from Inzhenerno-Fizicheskii Zhurnal,
VYol. 69, No. |, pp. 90-97, January-Fcbruary, 1996. Original article submitted May 12, 1995.

1062-0125/96/6901-0077315.00 ©1996 Plenum Publishing Corporation 77



{ [ pdxdz = N,
Q

NI {p (x = x) +§ (— g 3—‘;) + %):’ dxdz + k| ]Nlussgngb =0, M
Q

. h 9 4/3 .
fo[p(z"lc)“lzigl'z"}dxdl‘sz|Nl Sgnwzo

atp =0, ¢ #0and

) h 9 4,3
'J;zf [I’(xﬂxc)*-ll (—5%4—%” dxdz| < ky |N| .
’fo [n (z—z2,) - zzg -‘3—”} dxdz| < ky [N]* 2

atg =0and y = 0.
The coefficients i; and i; from (1) and (2), which take into account the hydrodynamic friction forces applied
to the pad are calculated by the formulas

. 2 . 2
iy =H\Hy /L", iy=HH, /B

while the dimensionless coefficients &y and k», which allow for rolling friction of thc lock bolt, are described by the
relations

ky =80,/L, ky=8,/B,
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The dimensionless laver thickness is determined by the formula
h=h.—(x~=x)p—=(z—z)y + A,

in which the dimensionless deformations A of bodies under friction are approximated, according to {4, §, 9], by
the expression
A=y (AN +35),

wherein the form function y is assumed to be dependent only on the coordinates of the bearing surface of the pad
and cqual to zero beneath the supporting point of the pad and to unity at the points of intersection of the coordinates
x = x, and z = z, with the pad contour.

The coefficient & of force deformation in the casc of point supporting of the pad is calculated by the formula
(8]
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and the coefficient of thermal deformation &, is described by the relation
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which follows from [9].
The pressurc and temperature distributions in the oil film of the guide gap of the tilting pad bearing are
determined by simultancous solution of the unstcady-state Reynolds cquations obtained in [3] for a two-phase

mcdium and energy transfer for an adiabatic lubricant layer [10 ]
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The boundary conditions for these equations arc the initial oil tcmperature Ty at the inlet of the lubricant
layer and cquality of the pressures at the boundary of the carrier part of the layer to zero. It is pertinent to note
that the indicated boundary can fail to coincide with the pad contour in the case of layer separation. The initial
conditions for the temperatures are sought by solution of the relevant steady-state problem.

The density and viscosity distributions of the film containing gas bubbles in a thermodynamic polytropic

process in a bubble are described by the formulas [3 ]
3
p=1/(1+pgr), n=(1-pexp(—aTb),
where
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while the dimensionless radius of a spherical bubble is determined from the Ravleigh—Plesset equation [11]:

1 (3)

2
'3—7 ([)u + 2) — Py, = /(S[) R
r r

in which the inertia and viscosity terms are dropped based on the work |11
By analogy with [4, 5], a solution of Reynolds Eq. (3) is sought in thc form

p=p+ pZ/.zC + pyp + pgp + /)SkN. (6)
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while the functions p; are dctermined by the elimination method {12 ] from the system of cquations
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In this case, an external dimensionless load that counterbalancies the hydrodynamic rcaction of the layer
between the collar and the pad is described by

N =Ag(l + apsinwr).

To solve ecnergy Eq. (4), we used the implicit running-count finite-difference scheme [13], while for
Rayleigh—Plesset Eq. (5) the method of dividing in half was adopted.
Using relation (6), the system of Egs. (1) and incqualities (2) is reduced to the form
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Ay, = j;zf I:pmﬂ (z - "‘c) =i i dz
is then solved by the iteration technique. Counting is continued on cach time layer until a relative error of the
pressures, differing from zero, at nodces of the finite-difference network becomes smaller in two subscquent
iterations than a specificd comparatively small number. In cach iteration, system of Egs. (7) is solved by the
Runge—Kutta method [14].

In numerical solution of the problem, we determined the region Q of the carrier part of the layer from the
values of the nonnegative pressures at the nodes of the finite-difference network, the dynamic parameters A, @,
and y of the collar—film with bubbles—pad system, the maximum temperature of oil superheating AT, and the
minimum layer thickness A, along the mean pad radius and at the lubricant outlet from the gap as functions of
the dimensionless time 1 as well as the nonlinear cocfficients of cffective elasticity and damping of the pad by the
formulas
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Fig. 1. Relations describing layer bchavior under unsteady operating
conditions of tilting pad bearing: a) B, effect: R; = 0.5 um; 6, = 0.23; z. = 0.5;
dashed curves: 8, = 0, x, = 0.6088; solid curves: 8, = 0.2, x. = 0.6069; b) R,
effect: 8, = 0.2; &; = 0.23; x. = 0.6069; z. = 0.5; solid curves: R, = 0.5 pm;
dashed curves: R, = 5 um; ¢) d; effect: Ry = 0.5 um; By = 0.2; x. = 0.6069; =,
= (.5; dashed curves: | = 0; solid curves 8; = 0.23; d) z, effect: R; =0.5 pm;
Ba = 0.2; x. = 0.6069; dashed curves: z, = 0.5 solid curves: z, = 0.515. ATy,

°C.
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Results of Numerical Simulation and Discussion. Numerical calculations were performed for a
hydrodynamic tilting pad bearing with the following initial data: L = B = 7.9 cm; g = 0.043 Pa-scc; pCp = 1.76
MI/(m® K): P, =0.1 MPa; 0 = 0.003 N/m; a = 0.0336 1/K; the polytropic index y = 1; number of pads z, = 8;
the mecan pad radius is 13.5 cm; the pad thickness is A, = 2.5 cm; the distance from the point of contact of the
lock bolt to the bearing surfacc of the pad is Hp,. = 3.5 cm; the curvature radius of the bearing bolt is Rg =20 mm;
the speed of collar rotation is 4500 rpm; the static load is Q = 0.09 MN; Young’s modulus is £=2.1- 10° MPa; the

Poisson cocfficient is v = 0.3; the temperature coefficient of linear expansion is agyp = 0.12-10" 4 1/K. The function

x is described by the relation y = (1 — 2.)c)2 + (1 - 2:)2, and the coefficient of force deformation &y was assumcd

to be cqual to 0.25, according to [8].
All calculations were performed using a 9 x 9 finite-difference network with time step At = /(60w) at the

prescribed dimensionless amplitude ap=0.75 and a harmonic-strength frequency of 75 Hz and different coefficients

of rolling friction of the lock bolt k|, and k; corresponding to d; =0 and &; = 0.23.
To study the influence of gas bubbles on the dynamic paramecters of the layer A¢, Am, ¢, v, and ATy, the

concentration cocfficient 8, was assumed to be cqual to 0 and 0.2
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Fig. 2. Relations describing layer behavior under steady operating of tilting
pad bearing: 1) N/ Ag; 2) A/ hmo; 3) he/ hegy 4) ¢/ p0; x. = 0.6069; z. = 0.5;
Ba=0.2.

In numerical calculations, the dimensionless coordinates x. and z. of point support of the pad were
maintained with an accuracy of 2- 1073,

Figure | illustrates the behavior of an oil film with bubbles in the case of unsteady functioning of the tilting
pad bearing. An analysis of the curves in this figure reveals a substantial change in the dimensionless parameters
of the layer A # Ay, hm/ hmo and ¢/ g with air bubbles in the oil (see Fig. 1a). However, the shapc of the curves
is practically independent of bubble radius (see Fig. Ib). It should be also noted that friction in thc support also
influences the dynamic characteristics of a lubricant film [6] but to a considerably lesser degree than the volume
content of air bubbles (Fig. Ic).

From Fig. 1d we can judge the influence of friction in a tilting pad bearing installed with small cccentricity
in the radial direction. In this case, the form of the curves remains unchanged; ¥ = 0.25 and is independent of
time.

Figure 2 shows dimensionless relations that describe the behavior of a layer with gas bubbles after cessation
of the first period of oscillations. They correspond to practically steady operation of the tilting pad bearing. Using
these relations, the nonlinear cocfficients of effective elasticity K. and damping Ky of the lubricant film were found
to be K. =0.168- 10" N/m and Kg=0.274- 107 N-sec/m. Fos comparison, we give the values of these coefficients
calculated by the lincar model [3]: K, =0.170- 10'°N/m and Kq4=0.270 107 N-sec/m. The insignificant difference
between their values is explained by the quasisteadiness of the lubrication process adopted in the models under
low-frequency loading and by the small variables of force deformations of the pad as compared with static thermal
deformations (for the given tilting pad bearing their ratio at the lubricant exit from the gap and the mean radius
of the pad does not exceed 0.22).

SUMMARY

I. A generalized model was constructed to study the dynamic characteristics of an oil film containing gas
microbubbles.

2. It was shown that the presence of microbubbles in a lubricant layer greatly affects the law of variation
of the angle of pad turning in the tangential direction and the thickness of the layer bencath the supporting point
and at the point of lubricant exit from the gap.

3. The moment of rolling friction of the lock bolt of the pad im|airs the support efficiency to a substantially
lesser degree than docs the volume content of gas microbubbles in the layer.

NOTATION

x=X/L, z=2/B, dimensionless coordinates; X, Z, coordinates; L and B, pad length and width; 4, pad
length-to-width ratio; My, characteristic thickness of the film; p = PHIZ/(,uO” = /L), dimensionless manometric
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pressure; /, manomctric pressure; U, circumferential velocity of the collar over the mean pad radius; v = Ut/L,
dimensionless time; ¢, time; 8= Q/Q) and n =u/my;, dimensionless truc density and dynamic viscosity coefficient
of the film; Q, (), u, density, specific heat, dynamic viscosity coefficicnt of the film; Q), truc density of the pure
oil; @, dimensionless excess temperaturc; T, temperature; Ty, characteristic temperature; AT,;, maximum
superheating of the oil over the mean pad radius; r = R/R,, dimensionless bubble radius; R, bubble radius; o,
surface tension; y, polytropic index; f§, ratio of the gas volume in the form of bubbles to the oil volume without
bubbles; a and a.xp, temperature coefficicnts of viscosity and lincar expansion of the pad base, respectively; ¢
= Lb/H|, vy = B¥/H,, dimensionless angles of pad turning; @, ¥, angles of pad turning; N, dimensionless
harmonic force balancing the hydrodynamic reaction of the layer; ap, dimensionless amplitude of the harmonic
load; Q, static load on the tilting pad bearing; z,, quantity of pads; Hp, pad thickness; Hp, distance from the
bearing planc of the pad to the point of intcrsection of the symmetry axis of the lock bolt with its spherical surface;
R;s, curvature radius of the lock bolt; £1 and v, £, and vy, £ and v, Young’s modulus and Poisson cocfficicnt of
the lock bolt, caulking ring of the lock bolt and matcrial of the pad, respectively; &g, coefficient of force deformation
(determined as in [8 ]); C, ratio of the dimensionless amplitude of the harmonic load balancing the hydrodynamic
reaction of the layer between the collar and the pad to the dimensionless amplitude of periodic oscillations of the
collar; ¢j0aq, angle of phase shift between acting harmonic load and stecady periodic oscillations of the collar; w =
W L/U , dimensionless angular frequency of periodic oscillations; w', angular frequency of periodic oscillations; €,
region covered by the film. Subscripts: ¢, quantities referred to the supporting point of the pad; oil, quantities
referred to the oil without bubbles at the gap inlet; a, quantities at atmospheric pressure; m, quantities for the
lubricant at the gap outlet and over the mecan pad radius; 0, steady-state values; -, derivative with respect to time,
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