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The influence of a comparatively low volume concentration of gas microbubbles contained in oil on nonlinear 

characteristics describing the behavior of an oil film in the guide gap of a hydrodynarnic tilting pad bearing 

under action of a low-frequency harmonic force is analyzed using a numerical dynamic" model of a collar-oil 

f i lm-pad system. It is shown that bubbles in the oil greatl.v affect the efficiency of the tilting pad bearing. 

Results of oil-film-dynamics investigations reported previously (including those of the present author) are 

generalized. 

Introduction. Recently the problems concerned with the substantial growth of alternating axial loads onto 

hydrodynamic  tilting pad bearings in engineering units have become pressing. Under such conditions a 

comparatively large amount of air bubbles often appears in the lubricant layer, which can cause failure of a tilting 

pad bearing due to "turning-over" of the oil wedge [1, 2, etc. ]. Therefore investigation of the effect of gas bubbles 

on the behavior of a collar-oil  f i lm-pad system is of both practical and theoretical interest. 

The subject matter of the present work includes investigation of the nonlinear dynamic characteristics of 

an oil film with gas microbubbles in the quide gap of a tilting pas bearing and generalization and refinement of the 

linear model of a similar process described in [3 ]. In an approximation of a thin lubricant layer calculations are 

made of the pressure components, deformations, displacements, and temperature field of a tilting pad that are in 

response to an external alternating harmonic low-frequency force of a comparatively large amplitude. To describe 

pressure and temperature distributions, we use the unsteady Reynolds equation and the energy equation for an 

adiabatic lubricant layer. The Rayleigh-Plesset  equation is used to determine the radii of oscillating spherical 

bubbles moving along the stream lines of the carrier medium (here the results reported previously in [3-6, elc. 1 

are slightly modified). 

To analyze the influence of layer microbubbles, we calculated the nonlinear coefficients of effective 

elasticity and damping of the support, which allow for the dynamic response of the bubbles to pressure variation 

in the film. As might be expected, these characteristics are practically independent of the size of the spherical 

bubbles, since with small microbubble radii of the order 10 -6 m (as adopted in the calculations) the frequency of 

their natural oscillations attains, according to [7 ], approximately 1 MHz, i.e., differs from the prescribed loading 

frequency of 75 Hz by several orders. With such a frequency difference, the characteristic time of support loading 

is lower by approximately several orders as compared with the period of natural oscillations of a bubble. Owing to 

this fact, the behavior of bubbles in an alternating pressure field, as shown in [7 I, is quasistatic and described by 

the degenerate steady-state Rayleigh-Plesset  equation. Also, :he influence of the volume concentration of bubbles 

on support efficiency is analyzed. 

Mathematical Formulation of the Problem and the Basic Design Formulas. The following system of 

equations for translational displacement of collar and rotational motion of a pad in tangential and radial directions 

under the ,lclion of an external force, hydrodynamic forces and constraint reactions of rolling friction of a lock boll 

of the pad with a caulking ring was presented earlier [4, 6 1: 
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f f pdxdz = N ,  

fj Iv 2 0 x  + dxdz + k I IN] 4/'3 sgn ~b = 0 ,  
(1) 

p h opJ 4/3 f f (z - Zc) - t 2 ~ G dxdz + k 2 IN[ sgn,p  = 0 

at~b ~ O, ~, r 0 and 

- 2  0x + dxdz  < k  I INI  4 / 3 ,  

p ( ~ -  ~ ) - i 2 -  ~ ~ d x &  < * : 2 1 N I  4/3  
(2) 

at ~ = 0 and q, = 0. 

The  coefficients il and  i2 from (1) and (2), which take into account the hyd rodyna mic  friction forces appl ied 

to the pad are  calculated by the formulas 

i I = H 1 H p c / L  2 i 2 = H l H p c / B  2 

while the d imensionless  coefficients kl and k2, which allow for rolling friction of the lock bolt,  are  descr ibed  by the 

relat ions 

k 1 = ( 3 1 c ~ 2 / L ,  k 2 = C~ldi2, /B,  

where 

e ' =  2 e ( e ; / ( e (  + Ao = i ; r, oaxa  
~2 0 

,2. 
E'~= E/d/(l  -~ ,~)  (k = 1 , 2 ) .  

The  d imensionless  layer  thickness is de te rmined  by the formula 

h = h c - (x - xc) r '  - (z - zc) V' + A ,  

in which the d imensionless  deformat ions  A of bodies under  friction are approximated ,  according to [4, 8, 9 ], by 

lhe expression 

k = x ( k N + a t ) ,  

wherein the form function X is assumed to be dependent  only on the coordinates  of the bear ing surface of the pad 

and equal 1o zero beneath the support ing point of lhc pad and to unity at the points of intersect ion of the coordinates  

x = x c and  z = z c with the pad contour. 

The coefficicnl k of force deformal ion in the case of point support ing of the pad is calculated by Ihc formula 

[81 

30(_) 
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and the coefficient of thermal  deformation at is described by the relation 

which follows from [9 ]. 

c~ t = aexpL 0.5 + + 1 - v |  H l 
8Hp 5 + 3v 't 2 j 

The pressure  and tempera ture  distributions in the oil film of the guide gap of the tilting pad bearing are 

determined by s imultaneous solution of the uns teady-s la te  Reynolds equations obtained in [3] for a two-phase 

medium and energy t ransfer  for an adiabatic lubricant layer [10 ]: 

0.W [12r/ ~ )  + ~z [12r 1 Oz) = 5  Ox Or 

(3) 

oo oo h3 I(op/2/o /2j 
h - ~  + qx ~x + 2qz Oz - 12rl~ ~ + ,t 7z + -q- hp' 

(4) 

where 

h h 3 0 p .  h 3 0 p ,  
q x = ~ -  1271 O--x~' q z =  - ' t  1271 Oz'  

0 = ( T -  To i l ) /T i ;  T 1 = /%i lUL/ (PCpH~) .  

The boundary  conditions for these equations are the initial oil temperature  Yoi I at the inlet of the lubricant 

layer and equality of the pressures at the boundary  of the carr ier  part of the layer to zero. It is pert inent to note 

that the indicated boundary  can fail to coincide with the pad contour in the case of layer  separation. The  initial 

conditions for the tempera tures  are sought by solution of the relevant s teady-s ta te  problem. 

The  densi ty  and viscosity distr ibutions of the film containing gas bubbles in a thermodynamic  polytropic 

process in a bubble are described by the formulas [31: 

p = 1 / ( I  + f l a r3 ) ,  r/ = ( 1  - fl) e x p ( - a r l O  ) ,  

where 

= ~a ; Pa = RaPa/c~ ; 
Pa + ksP + 

k s =/loll ULRa/(H~cr) , 

while the dimensionless  radius of a spherical bubble is determined from the R a y l e i g h - P l e s s e t  equation [111: 

1 2 
r3~ (Pa + 2) - Pa . . . .  r ksP ' 

(5) 

in which the inertia and viscosity terms are dropped based on the work [ 1 ]. 

By analogy with [4, 51, a solution of Reynolds Eq. (3) is sought in the form 

P = Pl + P2hc + P3~ + P4q' + P5 k /q '  (6) 
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while the functions p~ are  de te rmined  by the el iminat ion method 112 ] from the system of equat ions 

ox) =4, 

where 

fl = 2-1 O (,Oh)ox + h 00-~r', f2 = P ;  ]'3 = (Xc -- x ) p  ', 

.I"4 = (Zc - z) p ; f5 =Z,~ �9 

In this case, an external  d imensionless  load that counterba lancies  the hyd rodyna mic  react ion of the layer  

between the collar  and the pad is descr ibed  by 

N = A0(1  + a v s i n  cot ) . 

To solve energy  Eq. (4), we used the implicit  runn ing-coun t  f in i te-dif ference scheme [13 1, while for 

R a y l e i g h - P l e s s e t  Eq. (5) the method of dividing in half was adopted.  

Using relat ion (6), the sys tem of Eqs. (1) and inequali t ies (2) is reduced to the form 

a l l h  c + a12 ~ + a13 q, = N -  a l 4 k / q -  A ,  

a21"hc + a229b + a23t ], = b I - a 2 4 k / r  k 1 [NI 4 / 3 s g n , , b ,  

a31"hc + a32~b + a ", b 2 a34kN k 2 IN[ 4/3 33t/ = - - sgn q,, 

where 

la21h c + a23 q' + a24k~ -- bl[  < k I INI  4 '3  1a31i7c + a329b + a34kN ~ - b2[ < k 2 IN[ 4 /3  , 

aim = 42f  Pm+l dxdz  ; A = f ~ f  Pi dxdz  : bl = f J  Pl (Xc - x) + i 1 Ox dxdz  ; 

b 2 =  4 /  Pl ( Z c -  z) + i 2-~ Oz J d x d z "  

a2m = Pm+l (x - Xc) -- i I 2 Ox 

4 /  I h OPm+l-I dxdz  (m = 1 2 3 4) a3m = Pm+l (z -- Zc) -- i 2 2 Oz . . . .  

is then solved by the i teration technique. Counting is continued on each time layer until a relative error  of the 

pressures ,  d i f fer ing from zero, at nodes of the f in i te -d i f fe rence  network becomes smal le r  in two subsequent  

i terat ions than a specified comparat ively small number.  In each i terat ion,  system of Eqs. (7) is solved by the 

R u n g e - K u l t a  method [14 I. 

In numerical  solution of the problem, we de te rmined  the region Q of the carr ier  part  of the layer  from the 

values of the nonnegative pressures  at the nodes of the f ini te-difference network, the dynamic  pa ramete r s  h c, g', 

and g, of the c o l l a r - f i l m  with b u b b l e s - p a d  system,  the maximum tempera ture  of oil superhea t ing  AT,n, and the 

minimum layer  thickness hm along the mean pad radius and at the lubricant outlet from the gap as functions of 

the d imensionless  lime ~ as well as the nonl inear  coefficients of effective elastici ty and damping of the pad by the 

formulas 
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Fig.  1. R e l a t i o n s  d e s c r i b i n g  l a y e r  b e h a v i o r  u n d e r  u n s t e a d y  o p e r a t i n g  

cond i t i ons  of t i l t ing pad bear ing:  a) ~a effect:  R a = 0 . 5 , u r n ;  c~ I = 0.23; z c = 0.5; 

d a s h e d  curves:  fla = 0, x c = 0.6088;  solid curves : /3  a = 0.2, Xc = 0.6069;  b) R a 

effect :  ~a = 0.2; 61 = 0.23; Xc = 0.6069;  Zc = 0.5; sol id curves:  R a = 0.5 ,urn; 

d a s h e d  curves:  R a = 5,urn; c) 6l  effect:  R a = 0 .5 r  fla = 0.2; Xc = 0.6069;  z c 

= 0.5; d a s h e d  curves:  dil = 0; solid curves  6l  = 0.23; d) z c effect:  R a = 0.5!~m; 

~a = 0.2; xc  = 0.6069;  d a s h e d  curves:  Zc -- 0 . 5  solid curves:  z c = 0.515. AToil, 

~ 

m ' L A  0 /~oil z B A  0 

R e s u l t s  o f  N u m e r i c a l  S i m u l a t i o n  a n d  D i s c u s s i o n .  N u m e r i c a l  c a l c u l a t i o n s  w e r e  p e r f o r m e d  fo r  a 

h y d r o d y n a m i c  t i l t ing pad bea r i ng  with the  fo l lowing init ial  da ta :  L = B = 7.9 cm;/q) i l  = 0.043 P a . s e c ;  p C p  = 1.76 

M J / ( m 3 " K ) ;  Pa = 0. I MPa;  cr = 0.003 N / m ;  a = 0.0336 l / K ;  the polyt ropic  index  y = I; n u m b e r  of pads  zp = 8; 

the m e a n  pad rad ius  is 13.5 cm; the pad th ickness  is Hp = 2.5 cm; the d i s t ance  from the point of con tac t  of the 

lock bolt to the bea r ing  su r face  of the pad is Hpc = 3.5 cm; the cu rva tu re  rad ius  of the bea r ing  bolt is R,~ = 20 mm;  

the speed  of col lar  ro ta t ion  is 4500 rpm; the s tat ic  load is Q = 0.09 MN;  Young ' s  modu lus  is E = 2 .1 .105  MPa;  the 

Poisson coef f ic ien t  is v = 0.3; the  t e m p e r a t u r e  coeff ic ient  of l inear  expans ion  is aex p = 0 .12 '  t 0  - 4  1 /K.  T h e  func t ion  

1' is d e s c r i b e d  by the re la t ion  X = (1 - 2x) 2 + (1 - 2z) 2, and  the coeff ic ient  of force de fo rma t ion  c50 was a s s u m e d  

to be equal  to 0 .25,  a c c o r d i n g  to 18 1. 

All ca lcu la t ions  were  p e r f o r m e d  using a 9 x 9 f i n i t e -d i f f e r ence  ne twork  with t ime step Ar = : r  at the 

p resc r ibed  d i m e n s i o n l e s s  a m p l i t u d e  ct F--- 0 . 7 5  and  a h a r m o n i c - s t r e n g t h  f r equency  of 75 Hz and  d i f fe ren t  coef f ic ien ts  

of ro l l ing f r ic t ion of the  lock bolt kl and  k 2 co r r e spond ing  to dil = 0 and  r = 0.23. 

To  s tudy  the in f luence  of gas bubbles  on the d y n a m i c  p a r a m e t e r s  of the l ayer  he, hm, ~o, r and  A T m  the  

co n cen t r a t i on  coef f ic ien t  ,6 a was a s s u m e d  to be equal  to 0 and  0.2. 
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Fig. 2. Relations describing layer behavior under  steady operating of tilting 

pad bearing: 1) N/A0;  2) hm/hmo;  3) hc/hco; 4) ~o/q'0; Xc = 0.6069; z c = 0.5; 

fla = 0.2. 

In numerical calculations, the dimensionless coordinates Xc and  zc of point support  of the pad were 

maintained with an accuracy of 2 .10 -3 . 

Figure 1 illustrates the behavior of an oil film with bubbles in the case of unsteady functioning of lhe tilting 

pad bearing. An analysis of the curves in this figure reveals a substantial change in the dimensionless parameters 

of the layer h c , h c o ,  hm/hmO and ~o/~v 0 with air bubbles in the oil (see Fig. la). However, the shape of the curves 

is practically independent of bubble radius (see Fig. l b). It should be also noted thal friction in the support also 

influences the dynamic characteristics of a lubricant film [6 ] but to a considerably lesser degree than the volume 

content of air bubbles (Fig. lc). 

From Fig. ld we can judge the influence of friction in a lilting pad bearing installed with small eccentricity 

in the radial direction. In this case, the form of the curves remains unchanged;  7' = 0.25 and is independent  of 

time. 

Figure 2 shows dimensionless relations that describe the behavior of a layer with gas bubbles after cessation 

of the first period of oscillations. They correspond to practically sleady operation of the tilting pad bearing. Using 

these relations, the nonlinear coefficients of effective elasticity K e and damping K d of the lubricant film were found 

to be K e = 0 .168.10 I~ N / m  and Kcl = 0.274.107 N .see/re. Fo: comparison, we give the values of these coefficients 

calculated by the linear model [3 1: K e =0 .170 .10  l~ N / m  and Kd = 0.270.107 N .sec/m.  The insignificant difference 

between their values is explained by the quasisleadiness of the lubrication process adopted in the models under 

low-frequency loading and by the small variables of force deformations of the pad as compared with static thermal 

deformations (for the given tilting pad bearing their ratio at the lubricant exit from the gap and the mean radius 

of the pad does not exceed 0.22}. 

S U M M A R Y  

1. A generalized model was constructed to study the dynamic characteristics of an oil film containing gas 

microbubbles. 

2. It was shown thal the presence of microbubbles in a lubricant laver greatly affects lhc law of variation 

of the angle of pad turning in the tangential direction and the thickness of the layer beneath the supporting point 

and at the point of lubricant exit from the gap. 

3. The moment of rolling friction of the lock boll of the pad im[airs the support efficiency to a substantially 

lesser degree lhan does the volume content of gas microbubbles in the layer. 

N O T A T I O N  

x = X / L ,  z = Z / ' I L  dimensionless coordinates; X. Z, coordinates; L and B, pad length ,rod width; .,1., pad 

length-to-width ratio; HI,  characteristic thickness of the film; p = p H 2 / O ,  oil = UL), dimensionless manometric 
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pressure; P, manometric pressure; u, circumferential velocity of the collar over the mean pad radius; r = Ut /L ,  

dimensionless time; t, time;/3 = Q/Q1 and r/=/a/moil, dimensionless true density and dynamic viscosity coefficient 

of the film; Q, Cp,/~, density, specific heat, dynamic viscosity coefficient of the film; QI, true density of the pure 

oil; 0, dimensionless excess temperature;  T, temperature;  Ti, characteristic temperature;  AToil ,  maximum 

superheating of the oil over the mean pad radius; r = R / R a ,  dimensionless bubble radius; R, bubble radius; or, 

surface tension; / ,  polytropic index; /3, ratio of the gas volume in the form of bubbles to the oil volume without 

bubbles; a and C%xp, temperature  coefficients of viscosity and linear expansion of the pad base, respectively; 90 

= L ~ / H I ,  t/, = B t P / H  l, dimensionless angles of pad turning; ~ ,  qJ, angles of pad turning; N, dimensionless 

harmonic force balancing the hydrodynamic reaction of the layer; OF, dimensionless amplitude of the harmonic 

load; Q, static load on the tilting pad bearing; Zp, quantity of pads; Hp, pad thickness; Hoe, distance from the 

bearing plane of the pad to the point of intersection of the symmetry axis of the lock bolt with its spherical surface; 

R~, curvature radius of the lock bolt; E 1 and v l, E2 and v 2, E and v, Young's modulus and Poisson coefficient of 

the lock bolt, caulking ring of the lock bolt and material of the pad, respectively; 60, coefficient of force deformation 

(determined as in [8 ]); C, ratio of the dimensionless amplitude of the harmonic load balancing the hydrodynamic 

reaction of the layer between the collar and the pad to the dimensionless amplitude of periodic oscillations of the 

collar; CPioa0, angle of phase shift between acting harmonic load and steady periodic oscillations of the collar; ~o = 

w ' L / U ,  dimensionless angular frequency of periodic oscillations; ~ ,  angular frequency of periodic oscillations; f2, 

region covered by the film. Subscripts: c, quantities referred to the supporting point of the pad; oil, quantities 

referred to the oil without bubbles at the gap inlet; a, quantities at atmospheric pressure; m, quantities for the 

lubricant at the gap outlet and over the mean pad radius; 0, steady-state va lues ; . ,  derivative with respect to time. 
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